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1. Introduction

In very recent times, agricultural practices have begun to exploit within-field heterogeneity to obtain
higher yielding crops and more environmentally friendly fertilizer- and pesticide-application schemes. Global
positioning systems installed in new farm equipment can measure the application of fertilizer and insecticides
down to meters, and they provide closely spaced data on crop yields. The possibility of characterizing within-
field heterogeneity of a multitude of variables has brought precision agriculture (PA) to the modern American
farm. One of the goals of PA is to map variables, such as soil properties, so that the farmer can apply
fertilizer or insecticides sparingly. Because yield data is plentiful and typically correlates with other variables
that are difficult to measure, it is reasonable to use information on past yield to make better maps of soil
and entomological variables, for example. The area of study known as geostatistics not only provides maps
of predictions from noisy, incomplete data, but also maps of prediction standard errors. In this paper, we
apply a multivariate geostatistical technique known as cokriging and compare it to the univariate geostatistical
technique known as kriging, for some within-field measurements on corn yield and soil pH in Iowa, U.S.A.

2. Kriging and Cokriging

Spatial statistics and, in particular, geostatistics is concerned with sampling from a spatial domain. Let

the kth spatial random variable at location s be denoted Zi(s). The cross-variogram (Cressie, 1991, pg. 140)
is defined as,

W (h) = 001 (Zi(8) — Zon(s + h)); (1)

when k = m, we call it the variogram. Suppose there are only two variable types and let the kth variable type
consist of ny observed locations given by the random vector Zy = (Zk(sk,1), Zk(Sk,2), s Zk(Sk,ny, ) 5 k = 1,2.
Define the data vector Z = (Z!,Z})’, and suppose we want to predict Z; (so). Assume that E(Zy(s)) = xx(s)' B},
where x;(s) are known explanatory variables; k = 1,2. Cokriging prediction equations for Z;(sg) are given as
p1(s0; Z) = N'Z, where the formula for A in terms of (1) is given in Ver Hoef and Cressie (1993). Associated
with the cokriging predictor p;(so;Z) is the cokriging variance o2 (sg), whose formula in terms of (1) is again
found in Ver Hoef and Cressie (1993).

In all that is to follow, we assume that F(Zg(s)) = ux, and hence xx(s) = 1; k = 1,2. However, our
analyses are easily modified to the more general situation of nonconstant mean. Next, we need to choose
variogram and cross-variogram models. Ver Hoef and Barry (1996), Ver Hoef and Barry (1998), and Ver Hoef,
Cressie, and Barry (2001) show how to use the Fast Fourier Transform (FFT) to fit any moving-average function



that can be approximated by many small rectangles. That is,
755 (hl0;,v;) = / / g7 (ul6;) — g;(ulb;)g;(u —hlf;)du + v}, (2)

for h # 0, and zero otherwise; +;;(h|6;,v;) is the semivariogram and g;(u|d;) is called the moving-average
function. And the semicross-variogram is

(00,0, p,A) = (1/2){ | ] st [ [ gl 3)

oo o
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The moving-average constructions (2) and (3) are very flexible because the moving-average functions g;(u|6;)
and gr(u|fy) have no restrictions other than square integrability. Because the semivariograms (2) and semi-
crossvariograms (3) are built from a valid multivariate spatial process, they yield valid kriging and cokriging

equations.
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Figure 1. Spatial locations of data. Figure 2. Empirical semivariograms for pH. Panel
Yield locations are shown with crosses and numbers indicate semivariograms, with directions
pH locations are shown with open circles of 0, 45, 90, and 135 degrees from north. The larger

the circle, the larger the number of pairs of
points for that bin in the empirical semivariogram.

3. Applying Cokriging to Precision-Agriculture Data

We analyze precision-agriculture data from McGarvey Field in central Iowa, using some new models
developed for cokriging. These data were first discussed by Chen and Breidt (1997), who carried out a different
spatial analysis using nongeostatistical models; however, no field maps of pH were given. The spatial locations
of the data are shown in Fig. 1; there are 2068 yield values and 100 pH values. Prior to analysis, we transformed
the yield values to approximate normality by taking the 6th power; we then standardized the transformed data



by subtracting off their mean and dividing by their standard deviation. The empirical semivariogram (Cressie,
1993, p. 69) for the pH data is shown in Fig. 2. There appears to be spatial dependence in pH, and it seems to
be strongest at the 135-degree angle. Fig. 3 shows strong spatial dependence for yield as well, but it appears
to be equal in all directions (isotropy). The empirical semicross-variogram shows larger values for small lags
(Fig. 4), which indicates negative cross-correlation. Also notice that we show Fig. 4 in eight directions rather
than four because, although the variogram is radially symmetric, the cross-variogram is not. Moving-average
models were fit to the data using the methods described by Ver Hoef, Cressie, and Barry (2001). Using the
fitted models, the semivariogram and semicross-variogram values were used to predict pH values for a grid of
points ranging from 1 < z < 39 and 1 < y < 61, using both kriging and cokriging. A map of the predicted
values using cokriging is given in Fig. 5; the kriging results looked quite similar. A map of cokriging standard
errors is given in Fig. 6.
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Figure 3. Empirical semivariograms for yield. Figure 4. Empirical semicross-variograms
Panel numbers indicate directional semivario- for yield. Panel numbers indicate directional
grams, with directions of 0, 45, 90, and 135 semicross-variograms, with directions of 0, 45,
degrees from north. The larger the circle, the 90, 135, 180, 225, 270, and 315 degrees from
larger the number of pairs of points for that north. See Figure 3 caption for an explanation
bin in the empirical semivariogram. of circle size.

To check the model, we used some summary graphs and statistics based on cross-validation. Let A (s14) be
the (co)kriged value of the pH variable at location s;; when the ith datum for pH at location s;; has been removed
from the data set; we momentarily suppress the difference in notation between cokriging and kriging. Fig. 7
shows all predicted and actual values for both kriging and cokriging. Notice that both kriging and cokriging
produce predictions that match well with the observed values. We checked for bias in both kriging and cokriging
by calculating (1/n1) Y1, (Z1(s1i) — Z1(s1:)). We used RMSPE = {z;gl(il(su) — Z1(s13))? /nl}l/ 2, the
cross-validation root-mean-squared-prediction error, to assess the prediction performance of both kriging and
cokriging. Let var (21 (s14)) denote the estimated (co)kriging variance at location s;; when the ith datum for pH
at location s1; has been removed from the data set. Then define RMEV = {37, (var(Z (s1))/n1}'/2. 1 the
estimated prediction variances are correct, then RM EV should be close to RM SPE. We also wanted to assess
whether the estimated prediction standard errors were valid. If we denote §e(Zy (s1;)) = (17(1\7*[21(511-)])1/ 2. then
the prediction interval, 80%PI = Y i, I[|21(sli) — Z1(s15)] < 1.28 - se(Zy (s14))], should be about 0.80. For
kriging, we used the fitted parameters for the pH model only, and for cokriging we used all fitted parameters. The
results for cokriging (kriging) are as follows. Bias: 0.032(0.035); RMSPE: 0.586(0.592); RMEV: 0.579(0.591);
and 80%PI: 0.820(0.800). We conclude from these results that there is negligible bias; based on RMSPE and
RMEV, there is a 1 to 2% improvement when using cokriging over kriging, and both methods appear to have
statistically valid prediction variances and prediction intervals.
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Figure 5. Cokriging predictions of soil pH Figure 6. Cokriging prediction standard errors of
using yield as a secondary variable. soil pH using yield as a secondary variable.
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Figure 7. Cross-validation plots for cokriging (squares) and kriging (dots).
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