Diffusion Smoothing in Brain Imaging

Moo K. Chung¹, Keith J. Worsley¹, Jonathan Taylor¹, James O. Ramsay²
¹Department of Mathematics and Statistics, ²Department of Psychology
McGill University
Montreal, Quèbec, Canada H3A 2K6
Web: http://www.math.mcgill.ca/chung

Gaussian kernel smoothing has been widely used in smoothing 2D or 3D images such as magnetic resonance imaging (MRI), positron emission tomography (PET). An integral version of isotropic Gaussian kernel smoothing of the function $f(\mathbf{x})$, $\mathbf{x} = (x_1, \cdots, x_n) \in \mathbb{R}^n$ with smoothing parameter $h > 0$ is defined by

$$F^*(\mathbf{x}, h) = \int_{\mathbb{R}^n} K\left(\frac{\mathbf{x} - \mathbf{y}}{h}\right) \frac{f(\mathbf{y})}{h^n} \, d\mathbf{y},$$

where the Gaussian kernel $K(\mathbf{x}) = (2\pi)^{-n/2} \exp(-\|\mathbf{x}\|^2/2)$. The formulation (1) does not work on curved surfaces such as the triangular surface mesh of the human brain (MacDonald et al., 2000). However, by reformulating Gaussian kernel smoothing as a solution to a diffusion equation on a Riemannian manifold, the smoothing method can be generalized to an arbitrary curved surface. This generalization is called diffusion smoothing and has been used in the analysis of functional magnetic resonance imaging (fMRI) data on the brain surface (Andrade et al., 2001) and detecting the regions of surface area change in brain development (Chung, 2001). Let $F(\mathbf{x}, t) = F^*(\mathbf{x}, \sqrt{2t})$. Then $F(\mathbf{x}, t)$ is known to satisfy the diffusion equation

$$\frac{\partial F}{\partial t} = \Delta F, \quad F(\mathbf{x}, 0) = f(\mathbf{x}),$$

where $\Delta = \frac{\partial^2}{\partial x_1^2} + \cdots + \frac{\partial^2}{\partial x_n^2}$ is the Laplacian in \mathbb{R}^n.

The generalization of the Laplacian Δ to a Riemannian manifold M is called the Laplace-Beltrami operator. For the Riemannian metric $ds^2 = \sum_{i,j=1}^n g_{ij} \, dw^i dw^j$ on M, the Laplace-Beltrami operator Δ is defined as

$$\Delta F = \frac{1}{|g|^{1/2}} \sum_{i,j=1}^n \frac{\partial}{\partial w^i} \left(|g|^{1/2} g^{ij} \frac{\partial F}{\partial w^j}\right),$$

where $|g| = \det(g_{ij})$ and $g^{-1} = (g^{ij})$. Using the finite element method, we estimate (3) on the triangular mesh of the brain surfaces (Chung, 2001). Let $F(\mathbf{p}_i)$ be the data on the i-th node \mathbf{p}_i in the triangular mesh. If $\mathbf{p}_i, \ldots, \mathbf{p}_m$ are m-neighboring nodes around the central node \mathbf{p}, the Laplace-Beltrami operator is estimated as $\hat{\Delta} F(\mathbf{p}) = \sum_{i=1}^m w_i (F(\mathbf{p}_i) - F(\mathbf{p}))$ with the weights $w_i = (\cot \theta_i + \cot \phi_i)/|T|$, where θ_i and ϕ_i are the two angles opposite to the edge connecting \mathbf{p}_i and \mathbf{p}, and $|T|$ is the sum of the areas of the m-incident triangles at \mathbf{p}. Afterwards, (2) is solved via the finite difference scheme:

$$F(\mathbf{p}, t_{n+1}) = F(\mathbf{p}, t_n) + (t_{n+1} - t_n) \hat{\Delta} F(\mathbf{p}, t_n)$$
with the initial condition \(F(p, t_0) = f(p) \) for each node \(p \) on the triangular mesh. After \(N \)-iterations, the diffusion smoothing is locally equivalent to Gaussian kernel smoothing with smoothing parameter \(h = \sqrt{2}(t_N - t_0)^{1/2} \).

We used this technique to enhance the sulcal patterns of the brain surfaces extracted from MRI (Chung, 2001). The maximum mean curvature can be used to characterize sulci, which is the hollows of the brain surface. The diffusion was run directly on the brain surface and mapped onto an ellipsoid later to show hidden sulci. (a) shows the mean curvature of the brain surface before the smoothing. (b) is after 40-iterations with fixed \(t_{n+1} - t_n = 0.02 \). (c) is after 100-iterations.

REFERENCES

